Показать меню
20 май 13:48Политика

Анализ «шума» поможет выявить киберугрозы

Анализ «шума» поможет выявить киберугрозы

Ученые Московского физико-технического института и Казанского национального исследовательского технологического университета им. А. Н. Туполева разрабатывают математический аппарат, способный привести к прорыву в области сетевой безопасности. Результаты работы опубликованы в журнале Mathematics, кратко о них рассказала пресс-служба МФТИ.

Важную роль в исследованиях таких сложных систем, как сетевой трафик, играет корреляционный анализ, который описывает поведение системы в терминах наборов статистических параметров. Описывают сложные системы бестрендовые последовательности, часто определяемые как долгосрочные временные ряды или «шум». Они представляют собой колебания, создаваемые совокупностью различных источников, и являются одними из наиболее сложных данных для анализа и извлечения надежной, стабильной информации.

Одной из метрик, используемых в экономике и естественных науках при анализе временных рядов, является показатель Хёрста. Он позволяет предположить, сохранится ли тренд, присутствующий в данных. Например, продолжат ли значения возрастать или рост сменится убыванием. Это предположение выполняется для многих природных процессов и объясняется инертностью природных систем. Скажем, изменение уровня воды в озере, которое согласуется с прогнозами, выведенным из анализа значения показателя Хёрста, определяется не только текущим количеством воды, но и интенсивностью испарения, выпадением осадков, таянием снега и т. д.

Объем трафика, проходящего через сетевые устройства, чудовищен. Это касается и конечных аппаратов — домашних персональных компьютеров, но особенно — промежуточных, таких как маршрутизаторы, а также высоконагруженных серверов. Часть этого трафика, например, видеоконференцсвязь, необходимо отправить с максимальным приоритетом, тогда как отправка файлов может и подождать. А может быть, это торрент-трафик, который забивает узкий канал. Или вовсе идет сетевая атака, и ее нужно блокировать.

Анализ трафика требует вычислительных ресурсов, места для хранения (буфера) и времени — задержки в передаче. Всё это в дефиците, особенно если дело касается маломощных промежуточных устройств. В настоящее время используются либо относительно простые методы машинного обучения, которые страдают от недостатка точности, либо методы глубоких нейронных сетей, которые требуют достаточно мощных вычислительных станций с большим объемом памяти просто для разворачивания инфраструктуры для запуска, не говоря уже о самом анализе.

Идея, лежащая в основе работы группы ученых под  руководством Равиля Нигматуллина, достаточно проста: обобщить показатель Хёрста, добавив в него большее количество коэффициентов, чтобы получить более полное описание изменяющихся данных. Это позволяет находить закономерности в данных, которые принято считать шумами и которые ранее было невозможно анализировать. Таким образом удается производить «на лету» выделение значимых признаков и применять элементарные методы машинного обучения для поиска сетевых атак. В совокупности получается точнее тяжелых нейронных сетей, и такой подход можно разворачивать на маломощных промежуточных устройствах.

«Шум» — это то, что принято отбрасывать, но выделение закономерностей в «шумах» может быть очень полезным. Так, учеными был проведен анализ тепловых шумов передатчика в системе связи.  Данный математический аппарат позволил выделить из данных набор параметров, характеризующих конкретный передатчик. Это может стать решением одной из задач криптографии: Алиса посылает сообщения Бобу, Чак — злоумышленник, который пытается выдать себя за Алису и отправить Бобу сообщение. Бобу нужно отличить сообщение от Алисы от сообщения от Чака.

Александр Ивченко, сотрудник лаборатории мультимедийных систем и технологий МФТИ, один из авторов разработки, говорит: «Развитие данного математического аппарата может решить вопрос параметризации и анализа процессов, для которых нет точного математического описания. Это открывает огромные перспективы в описании, анализе и прогнозировании сложных систем».

По материалам: polit
Добавить комментарий
Ваше Имя:
Ваш E-Mail:
Введите два слова, показанных на изображении: *
Лента новостей
Процесс производства резиновой смеси включает в себя несколько этапов16:30Как правильно установить колёса, чтобы не возникло проблем при замене шин00:46«X5 Клуб» выяснил, как россияне сидят на диетах13:04Изменение спроса на загородную недвижимость21:25Компания из России представила продукцию в столице Саудовской Аравии17:06Грант Фонда Юрия Лужкова – важная поддержка для технологических разработок участников «АртПрома»13:26Команда «Магистры» получила грант Фонда Юрия Лужкова за разработку летательного аппарата23:30Креативные идеи и практики: при участии Фонда Юрия Лужкова в Самаре проходит фестиваль «АртПром»13:26Смелый дизайн, лаймовый цвет и динамика: визуальная революция ОТП Банка09:26ОТП Банк провёл в Омске арт-событие с акцентом на наследие Врубеля12:12Фонд Юрия Лужкова вдохновляет новое поколение изобретателей на «АртПроме»20:05200 участников присоединились к программе Академии АртМастерс «Из мастеров в наставники 2.0»16:15Психолог Елена Гриценко-Бринкман рассказала, что происходит за закрытыми дверями психологических консультаций20:44Россияне в мае пахнут шашлыками, а в остальное время фруктами: исследование «X5 Клуба»09:34«Память бесценна». Сеть ломбардов «Сияй» провела акцию в честь 80-летия Победы 19:26Москино и коммуникационное агентство Prophet получили премию «Серебряный лучник»17:43Россия – это не про лавандовый раф: «X5 Клуб» изучил предпочтения россиян в кофе16:56Эксперт «Х5 Клуба» рассказала, как избежать масштабных трат в майские праздники11:31