Показать меню
05 июн 16:00Политика

Новый алгоритм позволяет создать индивидуальную модель электрической активности сердца

Новый алгоритм позволяет создать индивидуальную модель электрической активности сердца

Ученые из лаборатории физиологии человека Московского физико-технического института совместно с коллегами из Казанского федерального университета, а также из Университета Джорджа Вашингтона (The George Washington University) предложили алгоритм, который позволяет получить математическую модель, описывающую электрическое возбуждение клеток сердца конкретного пациента. В работе, опубликованной в научном журнале PLOS ONE, исследуется два возможных подхода к этой задаче: в одном случае с использованием экспериментальных записей электрической активности, а в другом — профиля экспрессии генов. Работа была поддержана грантами РФФИ и  РНФ. О полученных результатах сообщила пресс-служба МФТИ.

Каждое сокращение сердца вызвано предшествующим электрическим возбуждением, так называемым потенциалом действия. Последний обусловлен электрическими токами через ионные каналы. Количество каналов, формирующих ионные токи, неодинаково: изменения могут быть вызваны как заболеваниями, так и непатологическими индивидуальными особенностями разных тканей сердца. Нарушение баланса между ионными токами различного типа может приводить к опасным аритмиям и смерти.

В силу большого количества факторов, влияющих на распространение возбуждения, общие принципы развития аритмий изучаются при помощи математических моделей на протяжении последних 50 лет. Несмотря на долгое развитие и усложнение таких моделей, они до сих пор редко применяются в клинической практике, главным образом из-за того, что описывают некоего «среднего» пациента. А чтобы они описывали конкретного пациента, их нужно персонализировать, что является сложной задачей, решению которой и посвящена настоящая статья.

Первый подход, обсуждаемый в статье, основан на использовании экспериментальных записей формы потенциала действия и дальнейшей оптимизации модели при помощи специальных компьютерных алгоритмов. Данные алгоритмы используют эволюционные принципы для поиска таких параметров, при которых модель воспроизводит эксперимент. При этом на множество случайно сгенерированных моделей поочередно действуют селекция, скрещивание и мутация. В работах разных групп прошлых лет показано, что недостаток этого подхода — сложность поиска уникального решения (существует множество комбинаций параметров, приводящих к форме потенциала действия, близкой той, которая была записана у данного пациента). 

«Мы пристально рассмотрели каждый из этапов работы алгоритма и оптимизировали их все. Например, в предыдущих работах модельные параметры подвергались мутации независимо друг от друга, а мы применили "векторную мутацию", которая действует сразу на все параметры одновременно. Так поиск требуемой параметризации модели идет значительно эффективнее. Вместе с другими модификациями получился алгоритм, который позволяет определить проводимости основных ионных каналов с высокой точностью», — рассказывает один из авторов работы Андрей Пикунов, сотрудник лаборатории физиологии человека МФТИ. 

Второй подход, обсуждаемый в статье, связан с использованием данных генетической экспрессии — процесса, в ходе которого наследственная информация от гена преобразуется в РНК или белок. Каждый ионный канал на клеточной мембране состоит из белковых субъединиц, которые встраиваются в клеточную мембрану после трансляции с матричной РНК (мРНК). Количество экспрессируемой мРНК может быть измерено, но до сих пор не было возможности предсказания электрофизиологических особенностей пациента на основе этой информации. Для этого в данной работе модель была откалибрована с использованием описанных выше алгоритмов на одном из пациентов. Затем на основе разницы профилей экспрессии были разработаны математические модели, которые успешно предсказали форму потенциала действия других пациентов по их индивидуальному профилю экспрессии генов.

Роман Сюняев, автор работы, заведующий лабораторией физиологии человека МФТИ, говорит: «Кроме фундаментального интереса, у работы есть широкие практические перспективы: от использования пациент-специфических моделей в клинической практике до дизайна лекарств. Так, многие лекарственные препараты зачастую действуют на различные ионные каналы. Разработанные алгоритмы в перспективе могут позволить понять на основании измерений формы потенциала действия эффект препарата на сердечные клетки».

По материалам: polit
Добавить комментарий
Ваше Имя:
Ваш E-Mail:
Введите два слова, показанных на изображении: *
Лента новостей
Уникальный видеодокумент о великом подвижнике Александре Ермакове представили в ВК19:04Беспилотные технологии в армии: новый этап военной революции22:03РБК: На стенде «Уралхима» на ПМЭФ экспонируется подлинный орден «Победа»17:53«Русская Медиагруппа» стала инфопартнёром VI Семейного образовательного форума Агутина16:04Знаковое для музыкальной индустрии и для большого артиста событие. Дима Билан презентовал свой новый альбом «Vector V»09:57В «X5 Клуб» рассказали о сотрудничестве с Московским зоопарком11:26Выставка «Креативные решения экологических проблем» в московском экоцентре Сборка20:50Спрос на недвижимость летом начнет расти00:50ЮАЗ и ТД «Руст-95» провели благотворительный праздник для детей в Оренбурге20:25Круглый стол «Art Law. Искусство и право: XXI век» прошёл в Государственном Эрмитаже16:52Российские ИТ-лидеры создают центр компетенций для поддержки цифрового бизнеса20:26Внедрение цифровых технологий в работу торговых компаний: как инновационные решения меняют облик малого бизнеса20:03Infoway Marketing: Презентация технологий в Дубае повысила привлекательность акций холдинга Si14 AG19:58Процесс производства резиновой смеси включает в себя несколько этапов16:30Как правильно установить колёса, чтобы не возникло проблем при замене шин00:46«X5 Клуб» выяснил, как россияне сидят на диетах13:04Изменение спроса на загородную недвижимость21:25Компания из России представила продукцию в столице Саудовской Аравии17:06
Популярные новости